MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / G* =  = [          ] ω           .


 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS. EM :



MODELO ATÔMICO BOHR GRACELI.



Na física atômica, o átomo de Bohr é um modelo que descreve o átomo como um núcleo pequeno e carregado positivamente cercado por elétrons em órbita circular.[1]

Ernest Rutherford, no início do século XX, realiza o experimento conhecido como espalhamento de Rutherford ,[2] no qual ele incidiu um feixe de partículas alfa (α) sobre uma folha de ouro e observou que, ao contrário do que era esperado - que as partículas deveriam ser refletidas pelos átomos de ouro considerados maciços até então -, muitas partículas atravessaram a folha de ouro e outras sofreram desvios. A partir da análise dessa experiência, afirmou que átomos eram constituídos de uma nuvem difusa de elétrons carregados negativamente que circundavam um núcleo atômico denso, pequeno e carregado positivamente.[1]

A partir dessa descrição, é fácil deixar-se induzir por uma concepção de um modelo planetário para o átomo, com elétrons orbitando ao redor do "núcleo-sol". Porém, a aberração mais séria desse modelo é a perda de energia dos elétrons através da radiação síncrotron: uma partícula carregada eletricamente ao ser acelerada emite radiações eletromagnéticas que têm energia; fosse assim, ao orbitar em torno do núcleo atômico, o elétron deveria gradativamente emitir radiações e cada vez mais aproximar-se do núcleo, em uma órbita espiralada, até finalmente chocar-se contra ele. Um cálculo rápido mostra que isso deveria ocorrer quase que instantaneamente.

Postulado de Bohr[editar | editar código-fonte]



Através das descrições quânticas da radiação eletromagnética propostas por Albert Einstein e Max Planck, o físico dinamarquês Niels Bohr desenvolve seu modelo atômico a partir de quatro postulados:[3]

  1. Os elétrons que circundam o núcleo atômico existem em órbitas que têm níveis de energia quantizados.
  2. A energia total do elétron (cinética e potencial) não pode apresentar um valor qualquer e sim, valores múltiplos de um quantum.[1]
  3. Quando ocorre o salto de um elétron entre órbitas, a diferença de energia é emitida (ou suprida) por um simples quantum de luz (também chamado de fóton), que tem energia exatamente igual à diferença de energia entre as órbitas em questão.
  4. As órbitas permitidas dependem de valores quantizados (bem definidos) de momento angular orbital, L, de acordo com a equação

 / G* =  = [          ] ω           .

onde n = 1, 2, 3, ... é chamado de número quântico principal e h é a constante de Planck.[4]

A regra 4 afirma que o menor valor possível de n é 1. Isto corresponde ao menor raio atômico possível, de 0,0529 nm, valor também conhecido como raio de Bohr. Nenhum elétron pode aproximar-se mais do núcleo do que essa distância.

O modelo de átomo de Bohr é às vezes chamado de modelo semi-clássico do átomo, porque agrega algumas condições de quantização primitiva a um tratamento de mecânica clássica. Este modelo certamente não é uma descrição mecânica quântica completa do átomo. A regra 2 diz que as leis da mecânica clássica não valem durante um salto quântico, mas não explica que leis devem substituir a mecânica clássica nesta circunstância. A regra 4 diz que o momento angular é quantizado, mas não diz por quê.

Expressão para o raio de Bohr[editar | editar código-fonte]

Considere o caso de um íon com a carga do núcleo sendo Ze e um eléctron movendo-se com velocidade constante v ao longo de um círculo de raio r com centro no núcleo.[5]

força de Coulomb sobre o electrão é

 / G* =  = [          ] ω           .

A força de Coulomb é a força centrípeta. Logo:

 / G* =  = [          ] ω           .

Usando a regra de quantização do momento angular de Bohr:

 / G* =  = [          ] ω           .

Temos para o n-ésimo raio de Bohr:

 / G* =  = [          ] ω           .

E a velocidade do electrão na n-ésima órbita:

 / G* =  = [          ] ω           .

Equação de Rydberg[editar | editar código-fonte]

equação de Rydberg, que era conhecida empiricamente antes da equação de Bohr, está agora na teoria de Bohr para descrever as energias de transições entre um nível de energia orbital e outro. A equação de Bohr dá o valor numérico da já conhecida e medida constante de Rydberg, e agora em termos de uma constante fundamental da natureza, inclui-se a carga do elétron e a constante de Planck.[1] Quando o elétron é movido do seu nível de energia original para um superior e, em seguida, recua um nível retornando à posição original, resulta num fóton a ser emitido. Usando a fórmula derivada para os diferentes níveis de energia de hidrogênio, determinam-se os comprimentos de onda da luz que um átomo de hidrogênio pode emitir. A energia de um fóton emitido por um átomo de hidrogênio é determinado pela diferença de dois níveis de energia de hidrogênio:[1]

 / G* =  = [          ] ω           .

onde ni é o nível inicial , e nf é o nível final de energia. Uma vez que a energia de um fóton está

 / G* =  = [          ] ω           .

o comprimento de onda do fóton emitido é dada pela

 / G* =  = [          ] ω           .

Isto é conhecido como a equação de Rydberg, e o R da constante Rydberg é  , ou  em unidades naturais . Esta equação foi conhecida no século XIX pelos cientistas que estudavam a espectroscopia, mas não havia nenhuma explicação teórica para estas equações ou uma previsão teórica para o valor de R, até Bohr. A propósito, a derivação de Bohr da constante Rydberg, bem como o acordo concomitante da equação de Bohr com as experimentalmente observadas linhas espectrais de Lyman (), Balmer (), e Paschen (), e a previsão teórica bem sucedida de outras linhas ainda não observadas, foi uma das razões para o seu modelo ser imediatamente aceito. Para aplicar em átomos com mais de um elétron, a equação de Rydberg pode ser modificada pela substituição de "Z" por "Z - b" ou "n" por "n - b", em que b é uma constante que representa o efeito de triagem devido a outros elétrons. Isto foi estabelecido empiricamente antes de Bohr apresentar seu modelo.[6]

Níveis energéticos dos elétrons em um átomo de hidrogênio[editar | editar código-fonte]

O modelo do átomo de Bohr explica bem o comportamento do átomo de hidrogênio e do átomo de hélio ionizado, mas é insuficiente para átomos com mais de um elétron.

Segue abaixo um desenvolvimento do modelo de Bohr que demonstra os níveis de energia no hidrogênio.

Sejam as seguintes convenções:

1. Todas as partículas são como ondas e, assim, o comprimento de onda do elétron, está relacionado à sua velocidade por

 / G* =  = [          ] ω           .

onde h é a constante de Planck e me, a massa do elétron. Bohr não tinha levantado esta hipótese porque só depois é que foi proposto o conceito associado a esta afirmação (veja dualidade onda-partícula). Porém, permite chegar na próxima afirmação.

2. A circunferência da órbita do elétron deve ser um múltiplo inteiro de seu comprimento de onda:

 / G* =  = [          ] ω           .

onde r é o raio da órbita do elétron e n, um número inteiro positivo.

3. O elétron mantém-se em órbita por forças eletrostáticas. Isto é, a força eletrostática é igual à força centrípeta:

 / G* =  = [          ] ω           .

onde   / G* =  = [          ] ω           .

qe, a carga elétrica do elétron.

Temos três equações e três incógnitas: v e r. Depois de manipulações algébricas para obter v em função das outras variáveis, pode-se substituir as soluções na equação da energia total do elétron:

 / G* =  = [          ] ω           .

Pelo teorema do virial, a energia total simplifica-se para

 / G* =  = [          ] ω           .

 / G* =  = [          ] ω           .

Ou, depois de substituídos os valores das constantes:[7]

 / G* =  = [          ] ω           .

Assim, o menor nível de energia do hidrogênio (n = 1) é cerca de -13.6 eV. O próximo nível de energia (n = 2) é -3.4 eV. O terceiro (n = 3), -1.51 eV, e assim por diante. Note que estas energias são menores que zero, o que significa que o elétron está em um estado de ligação com o próton presente no núcleo. Estados de energia positiva correspondem ao átomo ionizado, no qual o elétron não está mais ligado, mas em um estado desagregado.

O modelo atômico de Bohr pode ser facilmente usado para a composição do modelo atômico de Linus Pauling. Apenas somando as camadas e as colocando na ordem de Pauling.

Frequência[editar | editar código-fonte]

A frequência orbital[5]

 (X) / G* =  = [          ] ω           .

Onde  é a velocidade angular orbital do elétron.

 / G* =  = [          ] ω           .

A partir da Equação - acima - do movimento orbital mantido pela força de Coulomb acima temos

 / G* =  = [          ] ω           .

Substituindo esta expressão na Equação (X) temos:

 (Z) / G* =  = [          ] ω           .

Para o átomo - , / G* =  = [          ] ω           .

 a qual está na região ultravioleta do espectro electromagnético.

Se o elétron irradia, a energia E irá decrescer tornando-se cada vez negativa e a partir da Equação do raio da órbita r também diminui. O decréscimo em r na Equação (Z), provoca um aumento na frequência f.

De modo que temos um efeito de pista que quando a energia é irradiada, E diminui, o raio orbital r diminui, a qual por sua vez causa um aumento da frequência orbital f e aumentando continuamente a frequência irradiada.

Este modelo planetário prevê que o electrão se mova em espiral para dentro em direção ao núcleo, emitindo um espectro contínuo. Calcula-se que este processo não dure mais do que , um tempo muito curto na verdade.


DISTRIBUIÇÃO ELETRÔNICA DOS ELEMNETOS



1 H Hidrogênio : 1s¹
1s¹                  
1      
2 He Hélio : 1s²
1s²                  
2      
3 Li Lítio : 1s² 2s¹
1s²2s¹                 
21     
4 Be Berílio : 1s² 2s²
1s²2s²                 
22     
5 B Boro : 1s² 2s² 2p¹
1s²2s²2p¹                
23     
6 C Carbono : 1s² 2s² 2p²
1s²2s²2p²                
24     
7 N Nitrogênio : 1s² 2s² 2p3
1s²2s²2p3                
25     
8 O Oxigénio : 1s² 2s² 2p4
1s²2s²2p4                
26     
9 F Flúor : 1s² 2s² 2p5
1s²2s²2p5                
27     
10 Ne Néon : 1s² 2s² 2p6
1s²2s²2p6                
28     
11 Na Sódio : [Ne] 3s¹
1s²2s²2p63s¹               
281    
12 Mg Magnésio : [Ne] 3s²
1s²2s²2p63s²               
282    
13 Al Alumínio : [Ne] 3s² 3p¹
1s²2s²2p63s²3p¹              
283    
14 Si Silício : [Ne] 3s² 3p²
1s²2s²2p63s²3p²              
284    
15 P Fósforo : [Ne] 3s² 3p3
1s²2s²2p63s²3p3              
285    
16 S Enxofre : [Ne] 3s² 3p4
1s²2s²2p63s²3p4              
286    
17 Cl Cloro : [Ne] 3s² 3p5
1s²2s²2p63s²3p5              
287    
18 Ar Árgon : [Ne] 3s² 3p6
1s²2s²2p63s²3p6              
288    
19 K Potássio : [Ar] 4s¹
1s²2s²2p63s²3p6 4s¹            
2881   
20 Ca Cálcio : [Ar] 4s²
1s²2s²2p63s²3p6 4s²            
2882   
21 Sc Escândio : [Ar] 3d¹ 4s²
1s²2s²2p63s²3p63d¹4s²            
2892   
22 Ti Titânio : [Ar] 3d² 4s²
1s²2s²2p63s²3p63d²4s²            
28102   
23 V Vanádio : [Ar] 3d3 4s²
1s²2s²2p63s²3p63d34s²            
28112   
24 Cr Crômio : [Ar] 3d5 4s1 (distribuição eletrónica irregular)
1s²2s²2p63s²3p63d54s¹            
28121   
25 Mn Manganês : [Ar] 3d5 4s²
1s²2s²2p63s²3p63d54s²            
28132   
26 Fe Ferro : [Ar] 3d6 4s²
1s²2s²2p63s²3p63d64s²            
28142   
27 Co Cobalto : [Ar] 3d7 4s²
1s²2s²2p63s²3p63d74s²            
28152   
28 Ni Níquel : [Ar] 3d8 4s²
1s²2s²2p63s²3p63d84s²           
28162   
29 Cu Cobre : [Ar] 3d10 4s1 (distribuição eletrónica irregular)
1s²2s²2p63s²3p63d104s1            
28181   
30 Zn Zinco : [Ar] 3d10 4s²
1s²2s²2p63s²3p63d104s²            
28182   
31 Ga Gálio : [Ar] 3d10 4s² 4p¹
1s²2s²2p63s²3p63d104s²4p¹           
28183   
32 Ge Germânio : [Ar] 3d10 4s² 4p²
1s²2s²2p63s²3p63d104s²4p²           
28184   
33 As Arsénio : [Ar] 3d10 4s² 4p3
1s²2s²2p63s²3p63d104s²4p3           
28185   
34 Se Selénio : [Ar] 3d10 4s² 4p4
1s²2s²2p63s²3p63d104s²4p4           
28186   
35 Br Bromo : [Ar] 3d10 4s² 4p5
1s²2s²2p63s²3p63d104s²4p5           
28187   
36 Kr Crípton : [Ar] 3d10 4s² 4p6
1s²2s²2p63s²3p63d104s²4p6           
28188   
37 Rb Rubídio : [Kr] 5s¹
1s²2s²2p63s²3p63d104s²4p6  5s¹        
281881  
38 Sr Estrôncio : [Kr] 5s²
1s²2s²2p63s²3p63d104s²4p6  5s²        
281882  
39 Y Ítrio : [Kr] 4d¹ 5s²
1s²2s²2p63s²3p63d104s²4p64d¹ 5s²        
281892  
40 Zr Zircónio : [Kr] 4d² 5s²
1s²2s²2p63s²3p63d104s²4p64d² 5s²        
2818102  
41 Nb Nióbio : [Kr] 4d3 5s²
1s²2s²2p63s²3p63d104s²4p64d3 5s²        
2818112  
42 Mo Molibdénio : [Kr] 4d4 5s²
1s²2s²2p63s²3p63d104s²4p64d4 5s²        
2818122  
43 Tc Tecnécio : [Kr] 4d5 5s²
1s²2s²2p63s²3p63d104s²4p64d5 5s²        
2818132  
44 Ru Ruténio : [Kr] 4d6 5s²
1s²2s²2p63s²3p63d104s²4p64d6 5s²        
2818142  
45 Rh Ródio : [Kr] 4d7 5s²
1s²2s²2p63s²3p63d104s²4p64d7 5s²        
2818152  
46 Pd Paládio : [Kr] 4d8 5s²
1s²2s²2p63s²3p63d104s²4p64d8 5s²         
281816  
47 Ag Prata : [Kr] 4d9 5s²
1s²2s²2p63s²3p63d104s²4p64d9 5s²        
2818172  
48 Cd Cádmio : [Kr] 4d10 5s²
1s²2s²2p63s²3p63d104s²4p64d10 5s2        
2818182  
49 In Índio : [Kr] 4d10 5s² 5p¹
1s²2s²2p63s²3p63d104s²4p64d10 5s²5p¹       
2818183  
50 Sn Estanho : [Kr] 4d10 5s² 5p²
1s²2s²2p63s²3p63d104s²4p64d10 5s²5p²       
2818184  
51 Sb Antimónio : [Kr] 4d10 5s² 5p3
1s²2s²2p63s²3p63d104s²4p64d10 5s²5p3       
2818185  
52 Te Telúrio : [Kr] 4d10 5s² 5p4
1s²2s²2p63s²3p63d104s²4p64d10 5s²5p4       
2818186  
53 I Iodo : [Kr] 4d10 5s² 5p5
1s²2s²2p63s²3p63d104s²4p64d10 5s²5p5       
2818187  
54 Xe Xénon : [Kr] 4d10 5s² 5p6
1s²2s²2p63s²3p63d104s²4p64d10 5s²5p6       
2818188  
55 Cs Césio : [Xe] 6s¹
1s²2s²2p63s²3p63d104s²4p64d10 5s²5p6  6s¹    
28181881 
56 Ba Bário : [Xe] 6s²
1s²2s²2p63s²3p63d104s²4p64d10 5s²5p6  6s²    
28181882 
57 La Lantânio : [Xe] 4f¹ 6s²
1s²2s²2p63s²3p63d104s²4p64d104f¹ 5s²5p6 6s²    
28181982 
58 Ce Cério : [Xe] 4f² 6s²
1s²2s²2p63s²3p63d104s²4p64d104f²5s²5p6  6s²   
28182082 
59 Pr Praseodímio : [Xe] 4f3 6s²
1s²2s²2p63s²3p63d104s²4p64d104f35s²5p6  6s²    
28182182 
60 Nd Neodímio : [Xe] 4f4 6s²
1s²2s²2p63s²3p63d104s²4p64d104f45s²5p6  6s²    
28182282 
61 Pm Promécio : [Xe] 4f5 6s²
1s²2s²2p63s²3p63d104s²4p64d104f55s²5p6  6s²    
28182382 
62 Sm Samário : [Xe] 4f6 6s²
1s²2s²2p63s²3p63d104s²4p64d104f65s²5p6  6s²    
28182482 
63 Eu Európio : [Xe] 4f7 6s²
1s²2s²2p63s²3p63d104s²4p64d104f75s²5p6  6s²    
28182582 
64 Gd Gadolínio : [Xe] 4f7 5d1 6s² (distribuição eletrónica irregular)
1s²2s²2p63s²3p63d104s²4p64d104f75s²5p6 6s²    
28182682 
65 Tb Térbio : [Xe] 4f9 6s²
1s²2s²2p63s²3p63d104s²4p64d104f95s²5p6  6s²    
28182782 
66 Dy Disprósio : [Xe] 4f10 6s²
1s²2s²2p63s²3p63d104s²4p64d104f105s²5p6  6s²    
28182882 
67 Ho Hólmio : [Xe] 4f11 6s²
1s²2s²2p63s²3p63d104s²4p64d104f115s²5p6  6s²    
28182982 
68 Er Érbio : [Xe] 4f12 6s²
1s²2s²2p63s²3p63d104s²4p64d104f125s²5p6  6s²    
28183082 
69 Tm Túlio : [Xe] 4f13 6s²
1s²2s²2p63s²3p63d104s²4p64d104f135s²5p6  6s²    
28183182 
70 Yb Itérbio : [Xe] 4f14 6s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p6  6s²    
28183282 
71 Lu Lutécio : [Xe] 4f14 5d¹ 6s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d¹ 6s²    
28183292 
72 Hf Háfnio : [Xe] 4f14 5d² 6s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d² 6s²    
281832102 
73 Ta Tântalo : [Xe] 4f14 5d3 6s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d3 6s²    
281832112 
74 W Tungstênio : [Xe] 4f14 5d4 6s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d4 6s²    
281832122 
75 Re Rênio : [Xe] 4f14 5d5 6s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d5 6s²    
281832132 
76 Os Ósmio : [Xe] 4f14 5d6 6s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d6 6s²    
281832142 
77 Ir Irídio : [Xe] 4f14 5d7 6s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d7 6s²    
281832152 
78 Pt Platina : [Xe] 4f14 5d8 6s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d8 6s²    
281832162 
79 Au Ouro : [Xe] 4f14 5d10 6s¹
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d9 6s¹    
281832171 
80 Hg Mercúrio : [Xe] 4f14 5d10 6s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d10 6s²    
281832182 
81 Tl Tálio : [Xe] 4f14 5d10 6s² 6p¹
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d10 6s²6p¹   
281832183 
82 Pb Chumbo : [Xe] 4f14 5d10 6s² 6p²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d10 6s²6p²   
281832184 
83 Bi Bismuto : [Xe] 4f14 5d10 6s² 6p3
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d10 6s²6p3   
281832185 
84 Po Polônio : [Xe] 4f14 5d10 6s² 6p4
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d10 6s²6p4   
281832186 
85 At Astato : [Xe] 4f14 5d10 6s² 6p5
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d10 6s²6p5   
281832187 
86 Rn Radônio : [Xe] 4f14 5d10 6s² 6p6
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d10 6s²6p6   
281832188 
87 Fr Frâncio : [Rn] 7s¹
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d10 6s²6p6 7s¹ 
2818321881
88 Ra Rádio : [Rn] 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d10 6s²6p6 7s² 
2818321882
89 Ac Actínio : [Rn] 5f¹ 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f¹ 6s²6p67s² 
2818321982
90 Th Tório : [Rn] 5f² 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f²6s²6p67s² 
2818322082
91 Pa Protactínio : [Rn] 5f3 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f36s²6p67s² 
2818322182
92 U Urânio : [Rn] 5f4 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f46s²6p6gulag7s² 
2818322282
93 Np Neptúnio : [Rn] 5f5 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f56s²6p67s² 
2818322382
94 Pu Plutônio : [Rn] 5f6 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f66s²6p6 7s² 
2818322482
95 Am Amerício : [Rn] 5f7 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f76s²6p6 7s² 
2818322582
96 Cm Cúrio : [Rn] 5f8 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f86s²6p67s² 
2818322682
97 Bk Berquélio : [Rn] 5f9 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f96s²6p6 7s² 
2818322782
98 Cf Califórnio : [Rn] 5f10 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f106s²6p6 7s² 
2818322882
99 Es Einstênio : [Rn] 5f11 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f116s²6p6 7s² 
2818322982
100 Fm Férmio : [Rn] 5f12 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f126s²6p6 7s² 
2818323082
101 Md Mendelévio : [Rn] 5f13 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f136s²6p6 7s² 
2818323182
102 No Nobélio : [Rn] 5f14 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f146s²6p6 7s² 
2818323282
103 Lr Laurêncio : probably [Rn] 5f14 7s² 6d¹
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f146s²6p66d¹ 7s²
2818323292
104 Rf Rutherfórdio : probably [Rn] 5f14 6d² 7s²
1s²2s²2p63s²3p63d104s²4p64d104f145s²5p65d105f146s²6p66d²7s² 
28183232102



G* =  = [          ] ω           .


Comentários

Postagens mais visitadas deste blog